3. Given, matrix
$$
A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}
$$

\n $\therefore A^2 = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \cos \alpha - \sin \alpha$
\n $= \begin{bmatrix} \cos^2 \alpha - \sin^2 \alpha & -\cos \alpha \sin \alpha - \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha + \cos \alpha \sin \alpha & -\sin^2 \alpha + \cos^2 \alpha \end{bmatrix}$
\n $= \begin{bmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix}$
\nSimilarly,
\n $A^n = \begin{bmatrix} \cos(n\alpha) & -\sin(n\alpha) \\ \sin(n\alpha) & \cos(n\alpha) \end{bmatrix}, n \in N$
\n $\Rightarrow A^{32} = \begin{bmatrix} \cos(32\alpha) & -\sin(32\alpha) \\ \sin(32\alpha) & \cos(32\alpha) \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (given)
\nSo, $\cos(32\alpha) = 0$ and $\sin(32\alpha) = 1$
\n $\Rightarrow 32\alpha = \frac{\pi}{2} \Rightarrow \alpha = \frac{\pi}{64}$
\n9. Given, $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$
\n $\Rightarrow A^2 = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{bmatrix}$
\nAlso, given, $A^2 = B$
\n $\Rightarrow \begin{bmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$
\n $\Rightarrow \alpha^2 = 1$ and $\alpha + 1 = 5$
\nWhich is not possible at the same time.

- $\therefore\;$ No real values of α exists.
- 10. If A and B are square matrices of equal degree, then $A + B = B + A$

4. Given matrix

$$
P = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 9 & 3 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
\Rightarrow P = X + I \text{ (let)}
$$

\nNow, $P^5 = (I + X)^5$
\n
$$
= I + {}^5C_1(X) + {}^5C_2(X^2) + {}^5C_3(X^3) + ...
$$

\n[$\because I^n = I, I \cdot A = A \text{ and } (\alpha + x)^n = {}^nC_0\alpha^n + {}^nC_1\alpha^{n-1}x + ... + {}^nC_nx^n]$
\nHere, $X^2 = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 9 & 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 9 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 9 & 0 & 0 \end{bmatrix}$
\nand $X^3 = X^2 \cdot X = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 9 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
\nSo, $P^5 = I + 5 \begin{bmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 9 & 3 & 0 \end{bmatrix} + 10 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 9 & 0 & 0 \end{bmatrix}$
\n
$$
= \begin{bmatrix} 1 & 0 & 0 \\ 15 & 1 & 0 \\ 135 & 15 & 1 \end{bmatrix}
$$

\nand $Q = I + P^5 = \begin{bmatrix} 2 & 0 & 0 \\ 15 & 2 & 0 \\ 135 & 15 & 2 \end{bmatrix} = [q_{ij}]$
\

35. Do yourself by proper method and using trigonometric formulas.

27. Let
$$
\Delta = \begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}
$$

$$
= \begin{vmatrix} 1 & \frac{\log y}{\log x} & \frac{\log z}{\log x} \\ \frac{\log x}{\log y} & 1 & \frac{\log z}{\log y} \\ \frac{\log x}{\log z} & \frac{\log y}{\log z} & 1 \end{vmatrix}
$$

On dividing and multiplying R_1 , R_2 , R_3 by log x, $log y$, $log z$, respectively.

 $=\frac{1}{\log x \log y \log z}\begin{vmatrix} \log x & \log y & \log z \\ \log x & \log y & \log z \\ \log x & \log y & \log z \end{vmatrix} = 0$ $\begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ca \\ 1 & c & c^2 - ab \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} - \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$ $28.$ Now, $\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = \frac{1}{abc} \begin{vmatrix} a & a^2 & abc \\ b & b^2 & abc \\ c & c^2 & abc \end{vmatrix}$ Applying $R_1 \rightarrow aR_1, R_2 \rightarrow bR_2, R_3 \rightarrow cR_3$ $=\frac{1}{abc} \cdot abc \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$ $\therefore \begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ca \\ 1 & c & c^2 - ab \end{vmatrix} = 0$ **29.** Given, $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$ Applying $R_1 \rightarrow R_1 + R_2 + R_3$ $\Rightarrow \begin{vmatrix} x+9 & x+9 & x+9 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0 \Rightarrow (x+9) \begin{vmatrix} 1 & 1 & 1 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$ Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$

 $\Rightarrow (x+9)$ $\begin{vmatrix} 1 & 0 & 0 \\ 2 & x-2 & 0 \\ 7 & -1 & x-7 \end{vmatrix} = 0 \Rightarrow (x+9) (x-2) (x-7) = 0$ $x = -9, 2, 7$ are the roots. \Rightarrow \therefore Other two roots are 2 and 7. 1 4 20 **30.** Given, $\begin{vmatrix} 1 & -2 & 5 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix} = 0$ \Rightarrow 1 (-10 x^2 -10x) -4 (5x² -5) + 20 (2x + 2) = 0 $-30x^2 + 30x + 60 = 0$ \Rightarrow $(x-2)(x+1)=0$ \Rightarrow $x = 2, -1$ \Rightarrow Hence, the solution set is $\{-1, 2\}$. **31.** Given, $\begin{vmatrix} \lambda^2 + 3\lambda & \lambda - 1 & \lambda + 3 \\ \lambda + 1 & -2\lambda & \lambda - 4 \\ \lambda - 3 & \lambda + 4 & 3\lambda \end{vmatrix}$ $= p\lambda^4 + q\lambda^3 + r\lambda^2 + s\lambda + t$ Thus, the value of t is obtained by putting $\lambda = 0$. $\Rightarrow \begin{vmatrix} 0 & -1 & 3 \\ 1 & 0 & -4 \\ -3 & 4 & 0 \end{vmatrix} = t$ $t=0$ \Rightarrow $[\cdot]$ determinants of odd order skew-symmetric matrix is zerol